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Continuity

    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .



    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .

2     Continuity.nb



    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .
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    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .

4     Continuity.nb



    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .
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    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .
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    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .
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    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .
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    LIMITS & CONTINUITY

In this section we present a brief refresher course on limits and continuity for real-val-

ued functions. To begin, let f  be a real-valued function defined (at least) for all points in 

some open interval containing the point a Î R except, possibly, at a itself. We will refer 

to such a set as a punctured neighborhood of a.

Given a number L Î R, we write lim
x® a

f HxL = L to mean: 

              

We say that lim
x® a

f HxL exists if there is some number L Î R that satisfies the requirements 

spelled out above. 

• Theorem:

Let f  be a real-valued function defined in some punctured neighborhood of a Î R. 

Then, the following are equivalent: 

i) There exists a number L such that lim
x® a

f HxL = L (by the ¶-∆ definition).

ii) There exists a number L such that f HxnL ® L whenever xn ® a, where xn ¹ a for all n.

iii) 8 f HxnL<n=1
¥  converges (to something) whenever xn ® a, where xn ¹ a for all n. 

(Try to prove this yourself!)

Note: The point to item iii) is that if lim
n® ¥

f HxnL always exists, then it must actually be 

independent of the choice of 8xn<. This is not as mystical as it might sound; indeed, if 

xn ® a and yn ® a, then the sequence x1, y1, x2, y2, …  also converges to a. (How does this 

help?) This particular phrasing is interesting because it does not refer to L. That is, we 

can test for the existence of a limit without knowing its value. 

Now suppose that f  is defined in a neighborhood of a, this time including the point a 

itself. We say that f  is continuous at a if lim
x® a

f HxL = f HaL. That is, if: 

   

Notice that we replaced L by f HaL and we dropped the requirement that x ¹ a. The previ-

ous theorem has an obvious extension to this case:

• Theorem:

Let f  be a real-valued function defined in some neighborhood of a Î R. Then, the follow-

ing are equivalent: 

i) f  is continuous at a (by the ¶-∆ definition).

ii) f HxnL ® f HaL whenever xn ® a;

iii) 8 f HxnL< converges (to something) whenever xn ® a.

Notice that we dropped the requirement that xn ¹ a. Thus, if lim
n® ¥

f HxnL always exists, 

then it must equal f HaL (why?).

You might also recall that we have a notation for left- and right-hand limits and left and 

right continuity. For example, if we define

            f Ha -L = lim
x® a-

f HxL           and          f Ha +L = lim
x® a+

f HxL

(provided that these limits exist, of course), then we could add another equivalence to the 

above theorem:

iv) f Ha -L and f Ha +L both exist, and both are equal to f HaL. 

Note: One-sided limits are peculiar to functions defined on R, and they do not generalize 

very well (because they are tied to the order in R). But they are very good at what they do: 

They permit the cataloguing of very refined types of discontinuities. For example, we say 

that f  is right-continuous at a if f Ha +L exists and equals f HaL, and we say that f  has a 

jump discontinuity at a if f Ha -L and f Ha +L both exist but at least one is different from 

f HaL. A function having only jump discontinuities is not that terrible. In particular, mono-

tone functions are rather well behaved:

• Proposition:

Let f : Ha, bL�R be monotone and let a < c < b. Then, f Hc -L and f Hc +L both exist. Thus, 

f  can have only jump discontinuities.

Proof:

We might as well suppose that f  is increasing (otherwise, consider - f ). In that case, f HcL 

is an upper bound for 8 f H tL : a < t < c< and a lower bound for 8 f H tL : c < t < b<. All that 

remains is to check that

 sup 8 f H tL : a < t < c< = lim
x®c-

f HxL   and  inf 8 f H tL : c < t < b< = lim
x®c+

f H xL . 

We will sketch the proof of the first of these. 

Given ¶ > 0, there is some x0 with a < x0 < c such that sup
t< c

f HtL - ¶ < f Hx0L £ sup
t< c

f HtL. Now 

let ∆ = c - x0 > 0. Then, if c - ∆ < x < c, we get x0 < x < c, and so f Hx0L £ f HxL £ sup
t< c

f HtL. 

Thus, f HxL - sup
t < c

f HtL < ¶ .    à

• Theorem:

If f : Ha, bL�R is monotone, then f  has at most countably many points of discontinuity 

in Ha, bL, all of which are jump discontinuities. 

Proof:

That f  has only jump discontinuities follows from the proposition we have just proved 

above. Now we just need to count the points of discontinuity. 

Let’s reflect on the situation. If f : Ha, bL�R is, say, increasing, and if c Î Ha, bL, then the 

left-and right-hand limits of f  at c satisfy f Hc -L £ f HcL £ f Hc +L. In particular, f  is discon-

tinuous at c iff f Hc -L < f Hc +L. Consequently, if c and d are two different points of disconti-

nuity for f , then the intervals H f Hc -L, f Hc +LL and H f Hd -L, f Hd +LL are nonempty and 

disjoint. 

Thus,

9H f Hc -L, f Hc +LL : c is a point of discontinuity for f =

is a collection of nonempty, disjoint open intervals in R, and any such collection must be 

countable. à

• Corollary:

If f : @a, bD�@c, dD is both monotone and onto, then f  is continuous. 

We can put this corollary to good use. Recall that the Cantor function f : D�@0, 1D is 

monotone and onto. Indeed, if x Î D, then x = 0.2 a1 2 a2 ... Hbase 3L, where each 

ai = 0 or 1 and f HxL = Ú
i=1

¥
ai

2 i
. Since 8an<

n=1
¥  can be any sequence of 0’s and 1’s f  is clearly 

onto. 

We can extend the definition of the Cantor function f  to all of @0, 1D in an obvious way: 

We take f  to be an appropriate constant on each of the open intervals that make up 

@0, 1D\D. For example, we would set f HxL = f I 1

3
M =

1

2
 for each x Î I 1

3
,

2

3
M and 

f HxL = f I 1

9
M =

1

4
 for each x Î I 1

9
,

2

9
M. 

Formally, we define

     f HxL = sup 8 f H yL : y Î D, y £ x< for x Î @0, 1D\D .

The new function f : @0, 1D�@0, 1D is still increasing (why?) and is actually continuous! 

(because it is onto).  It is called a singular function because f ¢ = 0 at almost every point 

in @0, 1D. That is f ¢ = 0 on @0, 1D\D, a set of measure 1. 

The theorem above has a converse. Given any countable set D in R, we can construct an 

increasing function f : R�R that is discontinuous precisely at the points of D. 

Here is a brief sketch:

Let D = 8x1, x2, ...< and let 8¶n<
n=1
¥  be a sequence of positive numbers with Ú

n=1

¥

¶n < ¥. We 

define f HxL = Ú
xn£ x

¶n, where the sum is over the set 8n : xn £ x< and where f HxL = 0 if the 

set is empty. Notice that 0 £ f HxL £ Ú
n=1

¥

¶n < ¥ in any case. 

Now, if x < y, then 

               f H yL = Ú
xn£ y

¶n = Ú
xn£ x

¶n + Ú
x < xn£ y

¶n = f HxL + Ú
x < xn£ y

¶n ³ f HxL . 

Thus, f  is increasing.

Next we consider this formula in each of the cases x = xk and y = xk. 

Case 1:

    x = xk < y � f H yL = f HxkL + Ú
x

k
< xn£ y

¶n  .

Claim: f Hxk +L = f HxkL.

     lim
y®x

k

+
Ú

x
k

< xn£ y

¶n = 0        because       Ú
n=N

¥

¶n ® 0    as   N ® ¥

               

Case 2:

   x < xk = y � f HxkL = f HxL + Ú
x < xn£ x

k

¶n ³ f HxL + ¶k  .

Claim: f Hxk -L = f HxkL - ¶k, i.e.

         lim
x®xk

-
Ú

x < xn£ x
k

¶n = ¶k       

Putting this all together,

             f Hxk -L + ¶k = f HxkL = f Hxk +L  and    f Hxk +L - f Hxk -L = ¶k .             

The proof that f  is continuous at each x Î R\D is similar.   

            CONTINUITY ON ABSTRACT METRIC SPACES

Given a function f : HM , dL�HN , ΡL (where M , N  are arbitrary vector spaces), and given  

a point x Î M , we have at least two plausible definitions for the continuity of f  at x. 

Each definition is derived from its obvious counterpart for real-valued functions by 

replacing absolute values with an appropriate metric. 

For example, we might say that f  is continuous at x if ΡH f HxnL, f HxLL ® 0  whenever 

dHxn, xL ® 0. That is, f  should send sequences converging to x into sequences converg-

ing to f HxL. This says that f  “commutes” with limits: f Jlim
n®¥

HxnLN = lim
n®¥

H f HxnLL. 

Another alternative is to use the familiar ¶ - ∆ definition from elementary calculus. In 

this case we would say that f  is continuous at x  if, given any ¶ > 0, there always exists a 

∆ > 0  such that ΡH f HxL, f H yLL < ¶  whenever dHx, yL < ∆. Written in slightly different 

terms, this definition requires that f IB
∆
dHxLM Ì B¶

ΡH f HxLL. That is, f  maps a sufficiently 

small neighborhood of x into a given neighborhood of f HxL. 

We will rewrite this last definition once more, but this time we will use an inverse image. 

Recall that the inverse image of a set A Í Y , under a function f : X �Y , is defined to be 

the set 8x Î X : f HxL Î A< and is usually written f -1HAL (the inverse image of any set 

under any function always makes sense. Although the notation is similar, inverse image 

have nothing whatsoever to do with inverse functions, which don’t always make sense). 

Stated in terms of an inverse image, our condition reads: B
∆
dHxL Ì f -1IB¶

ΡH f HxLLM. Looks a 

bit imposing? Well, it actually tells us quite a bit. It says that the inverse image of an 

open set containing f HxL must still be open near x. Curious. The figure below will help 

you visualize these new definitions: 

         

If f  is continuous at every point of M , we simply say that f  is continuous on M , or often 

just that f  is continuous. 

By now it should be clear that any statement concerning arbitrary open balls will trans-

late into a statement concerning arbitrary open sets. Thus, there is undoubtedly a charac-

terization of continuity available that may be stated exclusively in terms of open sets. 

Of course, any statement concerning open sets probably has a counterpart using closed 

sets. And don’t forget sequences! Open sets and closed sets can each be characterized in 

terms of convergent sequences, and so we would expect to find a characterization of 

continuity in terms of convergent sequences, too. At any rate, we’ve done enough hint-

ing around about reformulations of the definition of continuity. It’s time to put our cards 

on the table.

• Theorem:

Given f : HM , dL�HN , ΡL, the following are equivalent: 

i) f  is continuous on M  (by the ¶-∆ definition). 

ii) For any x Î M , if xn ® x in M , then f HxnL ® f HxL in N . 

iii) If E is closed in N , then f -1HEL is closed in M .

iv) If V  is open in N , then f -1HVL is open in M . 

Proof:

i) � ii) : (Compare this with the case f : R�R.) Suppose that xn ®
d

x . Given ¶ > 0, let 

∆ > 0 be such that f IB
∆
dHxLM Ì B¶

ΡH f HxLL . Then, since xn ®
d

x, we have that 8xn< is eventu-

ally in B
∆
dHxL. But this implies that 8 f HxnL< is eventually in B¶

ΡH f HxLL . Since ¶ is arbitrary, 

this means that f HxnL ®
Ρ

f HxL.

ii) � iii) : Let E be closed in HN , ΡL. Given 8xn< Ì f -1HEL such that xn ®
d

x Î M , we need 

to show that x Î f -1HEL. But 8xn< Ì f -1HEL implies that 8 f HxnL< Ì HEL, while xn ®
d

x Î M  

tells us that f HxnL ®
Ρ

f HxL from ii). Thus, since E is closed, we have that f HxL Î E or 

x Î f -1HEL. 

iii) � iv) is obvious, since f -1HAcL = I f -1HALMc
. 

iv) � i) : Given x Î M  and ¶ > 0, the set B¶
ΡH f HxLL is open in HN , ΡL and so, by iv), the set 

f -1IB¶
ΡH f HxLLM is open in HM , dL. But then B

∆
dHxL Ì f -1IB¶

ΡH f HxLLM , for some ∆ > 0, because 

x Î f -1IB¶
ΡH f HxLLM. à

Example:

a) Define XQ : R�R by XQHxL =
1 if x Î Q

0 if x Ï Q
 . 

Then X
Q

-1HB1�3H1LL = Q  and X
Q

-1HB1�3H0LL = R\Q. Thus XQ cannot be continuous at any 

point of R because neither Q  nor R\Q contains an interval. 

b) A function f : M � N  between metric spaces is called an isometry (into) if f  preserves 

distances, that is, if ΡH f HxL, f H yLL = dHx, yL for all x, y Î M . 

Obviously, an isometry is continuous. The natural inclusions from R into R
2 (i.e. 

x Ì Hx, 0L ) and from R
2 into R

3 (this time Hx, yL Ì Hx, y, 0L ) are isometries.

c) Let f : N�R be any function. Then f  is continuous! Why? Because 8n< is an open ball 

in N. Specifically, 8n< = B1�2HnL Ì f -1HB¶H f HnLLL for any ¶ > 0. 

d) f : R�N is continuous iff f  is constant! Why? [Hint: Recall that R has no nontrivial 

clopen sets.] 

e) Relative continuity can sometimes be counterintuitive. From a) we know that XQ has 

no points of continuity relative to R, but the restriction of XQ to Q  is everywhere continu-

ous relative to Q! Why? 

f) If y is any fixed element of HM , dL, then the real-valued function f HxL = dHx, yL is contin-

uous on M . Ù

Note: The theorem stated prior to the above examples characterizes continuous functions 

in terms of open sets and closed sets. As it happens, we can use these characterizations 

“in reverse” to derive information about open and closed sets. In particular, we can 

characterize closures in terms of certain continuous functions. 

Definition: Given a nonempty set A and a point x Î M , we define the distance from x to 

A by: 

dHx, AL = inf 8dHx, aL : a Î A< .
Clearly, 0 £ dHx, AL < ¥ for any x and any A, but it is not necessarily true that dHx, AL > 0 

when x Ï A. For example, dHx, QL = 0 for any x Î R.

• Proposition: 

dHx, AL = 0  iff x Î A. 

Proof:

dHx, AL = 0 iff there is a sequence of points 8an<
n=1
¥  in A such that dHx, anL ® 0. But this 

means that an ® x and, hence, x Î A. à

Note that this proposition has given us another connection between limits in M  and 

limits in R. Loosely speaking, this proposition shows that 0 is a limit point of 

8dHx, aL : a Î A< iff x  is a limit point of A. We can get even more mileage out of this 

observation by checking that the map x Ì dHx, AL is actually continuous. For this it 

suffices to establish the following inequality: 

• Proposition: 

 dHx, AL - dH y, AL¤ £ dHx, yL. 

Proof:

It is true by triangle inequality that dHx, aL £ dHx, yL + dH y, aL for any a Î A. But dHx, AL is 

a lower bound for dHx, aL; hence dHx, AL £ dHx, yL + dH y, aL. Now, by taking the infimum 

over a Î A, we get dHx, AL £ dHx, yL + dH y, AL. 
Since the roles of x and y are interchangeable, we’re done. à

To appreciate what this has done for us, let’s make two simple observations. First, if 

f : M �R is a continuous function, then the set E = 8x Î M : f HxL = 0< is closed (why?). 

Conversely, if E is a closed set in M , then E is the “zero set” of some continuous real-

valued function on M ; in particular, E = 8x Î M : dHx, EL = 0<. Thus a set E is closed iff 

E = f -1H80<L for some continuous function f : M �R. 

Conclusion: If you know all of the closed (or open) sets in a metric space M , then you 

know all of the continuous real-valued functions on M . Conversely, if you know all of the 

continuous real-valued functions on M , then you know all of the closed (or open) sets in 

M .
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